Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
ACS Nano ; 18(11): 8452-8462, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38427806

RESUMO

Rampant dendrite formation and serious adverse parasitic reactions induced by migration of dissolved V/Mn cathode ions on Zn anode have hampered the high performance of aqueous zinc-ion batteries (AZIBs). Inspired by the coordination chemistry between functional groups of polymer and electrolyte ions, a freestanding layer consisting of dopamine-functionalized polypyrrole (DA-PPy) nanowires served as a selective ion transport layer at the anode-electrolyte interface to address these two issues, which could simultaneously avoid polarization caused by the introduction of an additional interface. On the one hand, the DA-PPy layer displays excellent zinc ion and charge transfer ability, as well as provides chemical homochanneling for zinc ions at the interface, which endow the DA-PPy layer with properties as a chemical guider and physical barrier for dendrite inhibition. On the other hand, the DA-PPy layer can trap excess transition metal ions fleeing from the cathodes, thus serving as a chemical barrier, preventing the formation of Vx+/Mnx+-passivation on the surface of the zinc anode. Consequently, the AZIBs based on V2O5 and MnO2 cathodes involving the DA-PPy functional layer show a great improvement in the capacity retention.

2.
J Control Release ; 368: 740-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499092

RESUMO

Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.


Assuntos
Surdez , Hidrogéis , Humanos , Polietilenoimina , Bandagens , Antibacterianos/farmacologia , Biofilmes
3.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359126

RESUMO

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Assuntos
Lipogênese , Glicogênio Hepático , Fígado , Hepatopatia Gordurosa não Alcoólica , Pró-Proteína Convertases , Serina Endopeptidases , Uridina Difosfato Glucose , Animais , Humanos , Camundongos , Carbono/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pró-Proteína Convertases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Uridina Difosfato Glucose/administração & dosagem , Uridina Difosfato Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células HEK293
4.
Adv Mater ; 36(4): e2303710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37571811

RESUMO

Lithium (Li) metal is considered as one of the most promising candidates of anode material for high-specific-energy batteries, while irreversible chemical reactions always occur on the Li surface to continuously consume active Li, electrolyte. Solid electrolyte interphase (SEI) layer has been regarded as the key component in protecting Li metal anode. Herein, a controllable dual-layered SEI for Li metal anode in a scalable, low-loss manner is constructed. The SEI is self-induced by the predeposited LiAlO2 (LAO) layer during the initial cycles, in which the outer organic layer is produced due to the electrons tunneling through LAO, resulting in the reduction of electrolyte. The robust inner LAO layer can promote uniform Li deposition owing to its favorable mechanical strength and ionic conductivity, and the outer organic layer can further improve the stability of SEI. Benefiting from the remarkable effects of this dual-layered SEI, enhanced electrochemical performance of the LAO-Li anode is achieved. Additionally, a large-size LAO-Li sample can be easily obtained, and the preparation of the modified Li metal anode shows huge potential for large-scale production. This work highlights the tremendous potential of this self-induced dual-layered SEI for the commercialization of Li metal anode.

5.
Comput Biol Med ; 169: 107844, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103482

RESUMO

Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.


Assuntos
Neoplasias Pancreáticas , Humanos , Entropia , Processamento de Imagem Assistida por Computador
6.
Front Microbiol ; 14: 1282106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111648

RESUMO

Background: Hyperammonemia is critical to the development of hepatic encephalopathy (HE) and is associated with mortality in end-stage liver disease. This study investigated the clinical value of ammonia variation in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) patients. Methods: A total of 276 patients with HBV-ACLF were retrospectively recruited. Patients' ammonia levels were serially documented. Baseline ammonia, Peak ammonia (highest level), and Trough ammonia (lowest level) were particularly corrected to the upper limit of normal (AMM-ULN). The primary endpoint was 28-day mortality. Results: The 28-day, 3-month, and 12-month mortality rates were 19.2, 25.7, and 28.2%, respectively. A total of 51 (18.4%) patients had overt HE (grade 2/3/4). Peak AMM-ULN was significantly higher in patients with overt HE and non-survivors compared with their counterparts (P < 0.001). Following adjustment for significant confounders, high Peak AMM-ULN was an independent predictor of overt HE (hazard ratio, 1.031, P < 0.001) and 28-day mortality (hazard ratio, 1.026, P < 0.001). The cut-off of Peak AMM-ULN was 1.8, determined by using the X-tile. Patients with Peak AMM-ULN appearing on days 1-3 after admission had a higher proportion of overt HE and mortality compared to other groups. Patients with decreased ammonia levels within 7 days had better clinical outcomes than those with increased ammonia. Conclusion: Serum Peak ammonia was independently associated with overt HE and mortality in HBV-ACLF patients. Serial serum ammonia may have prognostic value.

7.
Small ; : e2304318, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38018305

RESUMO

The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105 /100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.

8.
Int J Pharm ; 643: 123215, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37460048

RESUMO

Seeking a potent therapeutic strategy for alleviating atopic dermatitis (AD) attack and preventing its recurrence is highly desired but remains challenging in clinical practice. Here, we propose an inflammation-responsive double-layer microneedle (IDMN) patch in situ delivering VD3 for recurrent AD therapy. IDMN comprises the backing layer part and the double-layer microneedle part, in which the inner layer is gelatin methacryloyl (GelMA) loaded with VD3 while the outer layer is composed of hyaluronic acid (HA). Introduction of the HA backing layer and outer layer around the GelMA tips can not only provide sufficient mechanical strength to penetrate into hardened AD skin with minimal invasiveness, but also exert a strong moisturizing effect after being rapidly dissolved. The inner layer of GelMA is degraded by the matrix metalloproteinase (MMP) in a dose dependent manner, which is secreted according to the disease progression of AD. The responsive degradation of GelMA tips result in corresponding release of VD3 to treat AD, triggering negative feedback against GelMA degradation. The IDMN administration on AD-bearing mice reveals efficient "curing" performances (including suppress erythema, scaling and lichenification, reduce epidermal thickness, inhibit mast cells infiltration, and down-regulate inflammatory factor secretion), which are basically realized through synergistic effect of the released VD3 and the dissolved HA molecules. Importantly, the residual tips of IDMN with VD3 are retained in the skin after the first AD relief, showing promising "warning" ability to inhibit the recurrence of AD. Hence, the developed IDMN patch is expected to be one of the excellent candidates for AD therapy and other relapsing diseases in clinical fields.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Inflamação/tratamento farmacológico , Pele/metabolismo , Sistemas de Liberação de Medicamentos , Ácido Hialurônico
9.
ACS Biomater Sci Eng ; 9(7): 4302-4310, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37307138

RESUMO

Low efficiency of targeting and delivery toward the thrombus site poses challenges to using thrombolytic drugs. Inspired by the biomimetic system of platelet membranes (PMs) and glucose oxidase (GOx) modification technologies, we develop a novel GOx-powered Janus nanomotor by asymmetrically attaching the GOx to polymeric nanomotors coated with the PMs. Then the PM-coated nanomotors were conjugated with urokinase plasminogen activators (uPAs) on their surfaces. The PM-camouflaged design conferred excellent biocompatibility to the nanomotors and improved their targeting ability to thrombus. The Janus distribution of GOx also allows the uneven decomposition of glucose in biofluids to produce a chemophoretic motion, increasing the drug delivery efficiency of nanomotors. In addition, these nanomotors are located at the lesion site due to the mutual adhesion and aggregation of platelet membranes. Furthermore, thrombolysis effects of nanomotors are enhanced in static and dynamic thrombus as well as in mouse models. It is believed that the novel PM-coated enzyme-powered nanomotors represent a great value for thrombolysis treatment.


Assuntos
Fibrinolíticos , Trombose , Animais , Camundongos , Fibrinolíticos/uso terapêutico , Glucose Oxidase , Trombose/tratamento farmacológico , Plaquetas , Polímeros
10.
Adv Sci (Weinh) ; 10(25): e2300195, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356052

RESUMO

Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.


Assuntos
Sistemas CRISPR-Cas , Ciência Translacional Biomédica , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Genômica
11.
Bioact Mater ; 27: 288-302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37113688

RESUMO

New antimicrobial strategies are urgently needed to meet the challenges posed by the emergence of drug-resistant bacteria and bacterial biofilms. This work reports the facile synthesis of antimicrobial dynamic covalent nano-networks (aDCNs) composing antibiotics bearing multiple primary amines, polyphenols, and a cross-linker acylphenylboronic acid. Mechanistically, the iminoboronate bond drives the formation of aDCNs, facilitates their stability, and renders them highly responsive to stimuli, such as low pH and high H2O2 levels. Besides, the representative A1B1C1 networks, composed of polymyxin B1(A1), 2-formylphenylboronic acid (B1), and quercetin (C1), inhibit biofilm formation of drug-resistant Escherichia coli, eliminate the mature biofilms, alleviate macrophage inflammation, and minimize the side effects of free polymyxins. Excellent bacterial eradication and inflammation amelioration efficiency of A1B1C1 networks are also observed in a peritoneal infection model. The facile synthesis, excellent antimicrobial performance, and biocompatibility of these aDCNs potentiate them as a much-needed alternative in current antimicrobial pipelines.

12.
Int J Biol Sci ; 19(6): 1968-1982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063434

RESUMO

MLL-AFF4 fusion gene has been discovered in acute leukemia, whether AFF4 alone plays a role in tumor, especially pancreatic tumorigenesis, is still elusive. Increasing evidence suggests that cancer cells altered nucleotide metabolism during tumorigenesis. In present study, we observed AFF4 overexpression promoted cell proliferation, colony formation and cell cycle progression while loss of AFF4 impairs above phenotypes of pancreatic ductal carcinoma (PDAC) cells. Using RNA-profiling, we revealed that HPRT1 and IMPDH2, two enzymes in the nucleotide metabolism pathway, were upregulated following AFF4 overexpression. Simultaneous expression of HPRT1 and IMPDH2 would mainly rescue the phenotypes of cells lacking AFF4. Additionally, xenograft study proved HPRT1 and IMPDH2 genetically function in the downstream of AFF4, which was recruited by PAX2 when CDK9 mediated AFF4 phosphorylation at S388 and drove HPRT1 and IMPDH2 expression. We further discovered PI3K/c-Myc axis is required for AFF4 expression in PDAC cells. Finally, we obtained the positive correlation between c-Myc and AFF4 or AFF4 and HPRT1/IMPDH2 in clinical PDAC samples. Otherwise, we conducted data-mining and found that the expression levels of AFF4 and HPRT1/IMPDH2 are correlated with patients' prognosis, establishing AFF4 as a potential biomarker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinogênese/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Nucleotídeos , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
13.
ACS Nano ; 17(9): 8564-8574, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36988967

RESUMO

The occurrence of acute pancreatitis (AP) is increasing significantly worldwide. However, current diagnostic methods of AP do not provide a clear clinical stratification of severity, and the prediction of complications in AP is still limited. Here, we present a robust AP identification and diagnosis (RAPIDx) method by the proteomic fingerprinting of intact nanoscale extracellular vesicles (EVs) from clinical samples. By tracking analysis of circulating biological nanoparticles released by cells (i.e., EVs) via bottom-up proteomics, we obtain close phenotype connections between EVs, cell types, and multiple tissues based on their specific proteomes and identify the serum amyloid A (SAA) proteins on EVs as potential biomarkers that are differentially expressed from AP patients significantly. We accomplish the quantitative analysis of EVs fingerprints using MALDI-TOF MS and find the SAA proteins (SAA1-1, desR-SAA1-2, SAA2, SAA1-2) with areas under the curve (AUCs) from 0.92 to 0.97, which allows us to detect AP within 30 min. We further realize that SAA1-1 and SAA2, combined with two protein peaks (5290.19, 14032.33 m/z), can achieve an AUC of 0.83 for classifying the severity of AP. The RAPIDx platform will facilitate timely diagnosis and treatment of AP before severity development and persistent organ failure and promote precision diagnostics and the early diagnosis of pancreatic cancer.


Assuntos
Pancreatite , Proteômica , Humanos , Doença Aguda , Pancreatite/diagnóstico , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
14.
Cancer Immunol Res ; 11(4): 501-514, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758174

RESUMO

Neutrophils act as a "double-edged sword" in the tumor microenvironment by either supporting or suppressing tumor progression. Thus, eliciting a neutrophil antitumor response remains challenging. Here, we showed that tumor cell-derived microparticles induced by methotrexate (MTX-MP) acts as an immunotherapeutic agent to activate neutrophils, increasing the tumor-killing effect of the cells and augmenting T-cell antitumor responses. We found that lactate induced tumor-associated neutrophils to elevate expression of programmed cell death protein 1 (PD-1) and that PD-1+ neutrophils had the properties of N2 neutrophils and suppressed T-cell activation through PD-1/programmed death-ligand 1 (PD-L1) signaling. By performing ex vivo experiments, we found that MTX-MPs-activated neutrophils had reduced surface expression of PD-1 as a result of PD-1 internalization and degradation in the lysosomes, leading to the cells showing a decreased capacity to suppress T-cell responses. In addition, we also found that MTX-MP-activated neutrophils released neutrophil elastase which could kill tumor cells and disrupt tumor stroma, leading to increased T-cell infiltration. Furthermore, using a combination of anti-PD-L1 and MTX-MPs, we observed that long-term survival increased in a mouse model of lung cancer. Collectively, these findings highlight the potential use of a combination of anti-PD-L1 and MTX-MPs to enhance the therapeutic effect of anti-PD-L1 alone.


Assuntos
Micropartículas Derivadas de Células , Neoplasias Pulmonares , Animais , Camundongos , Linfócitos T/metabolismo , Metotrexato/farmacologia , Metotrexato/metabolismo , Neutrófilos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
15.
ACS Appl Mater Interfaces ; 15(8): 10371-10382, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36786554

RESUMO

Malignant ascites (MA) is a common symptom of peritoneal metastasis in liver cancer. Cancer immunotherapy can modulate immune cells to induce antitumor immune efficiency. Reprogramming tumor immune microenvironment (TIME) is a momentous strategy to overcome immunosuppression and achieve immune functional normalization. Inspired by the inherent apoptotic bodies and vesicles, we proposed and systematically studied engineered apoptosis-bioinspired nanoparticles (EBN) for cancer immunotherapy of MA. Using both in vitro and in vivo experimental validations, we elucidated that EBN could be efficiently engulfed by the tumor-associated macrophages (TAMs) and manipulate their polarization. Moreover, a boosted immune cascade response as a result of heightening cytotoxic T-lymphocytes (CTLs) activity was investigated. Based on these results, EBN was confirmed to have strong immune cascade activation capability. Remarkably, the injection of EBN further reduced ascites volume and reformed immune cell subtypes, compared to the injection of either PBS or free TMP195 alone. In short, this novel nanodrug delivery system (NDDS) represents a prospective immunotherapeutic approach for clinical therapeutics of hepatoma ascites and other malignant effusion.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Neoplasias Peritoneais , Humanos , Ascite/patologia , Estudos Prospectivos , Macrófagos , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Microambiente Tumoral
16.
Adv Healthc Mater ; 12(17): e2202904, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815538

RESUMO

Nanoparticles (NPs)-based drug carriers are effective in reducing systemic toxicity and drug resistance for chemotherapy, and an emerging trend focuses on integrating cell membranes with nanomedicines for tumor targeting. Mesenchymal stem cells (MSCs) are promising candidates due to their unique tropism toward cancer cells, yet the tumor-tropic abilities can differ for MSCs sourced from different tissues. Here, a multichannel microfluidic chip to screen different sourced MSCs with the greatest tropism toward cervical cancer cells is developed. Based on this, the cell membranes from the chorionic plate-derived MSC are isolated and membrane-camouflaged platinum prodrug composite NPs for cervical cancer treatment are prepared. Results demonstrate that the composite NPs can effectively target tumor sites and have a therapeutic effect both in vitro and in vivo. It is believed that the present microfluidic platform is a powerful tool for cell screening and tumor-on-a-chip studies, and the derived nanodelivery system represents the great value of cell membrane-camouflaged nanomedicine for targeted cancer therapy.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Microfluídica , Membrana Celular , Células-Tronco Mesenquimais/metabolismo
17.
Nat Commun ; 14(1): 48, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599851

RESUMO

Biopsy is the recommended standard for pathological diagnosis of liver carcinoma. However, this method usually requires sectioning and staining, and well-trained pathologists to interpret tissue images. Here, we utilize Raman spectroscopy to study human hepatic tissue samples, developing and validating a workflow for in vitro and intraoperative pathological diagnosis of liver cancer. We distinguish carcinoma tissues from adjacent non-tumour tissues in a rapid, non-disruptive, and label-free manner by using Raman spectroscopy combined with deep learning, which is validated by tissue metabolomics. This technique allows for detailed pathological identification of the cancer tissues, including subtype, differentiation grade, and tumour stage. 2D/3D Raman images of unprocessed human tissue slices with submicrometric resolution are also acquired based on visualization of molecular composition, which could assist in tumour boundary recognition and clinicopathologic diagnosis. Lastly, the potential for a portable handheld Raman system is illustrated during surgery for real-time intraoperative human liver cancer diagnosis.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Análise Espectral Raman/métodos , Biópsia , Neoplasias Hepáticas/diagnóstico
18.
J Nanobiotechnology ; 20(1): 478, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384628

RESUMO

A film with elaborate microstructures that offers biomimetic properties and multi functionalities is highly desired in wound healing. Here, we develop an aligned hydrogel fiber film integrated with multi-active constituents to promote wound healing. Such fiber films are designed and constructed by photo-crosslinking the methacrylate gelatin (GelMA) doped with silver nanoparticles (Ag NPs) and iridium nanoparticles coated with polyvinylpyrrolidone (PVP-Ir NPs) in the precursor solution using electrospinning. The nature of GelMA hydrogel and the aligned arrangement of nanofibers endow the film with high-water content, self-degradability, improved bionic characteristics, oriented cell growth, and improved cell proliferation and migration. Moreover, the encapsulated nanozymes and Ag NPs offer the fiber film with superior reactive oxygen species (ROS) scavenging and antibacterial capability. The infected wound model shows that the multi-active hydrogel fiber film can reduce inflammation by killing bacteria and decomposing ROS, which accelerates the growth of new blood vessels and granulation tissue. Benefitting from these features, the versatile aligned GelMA fiber film demonstrates the clinically translational potential for wound healing.


Assuntos
Irídio , Nanopartículas Metálicas , Biomimética , Prata/farmacologia , Prata/química , Espécies Reativas de Oxigênio , Cicatrização , Hidrogéis/farmacologia , Hidrogéis/química
20.
Front Immunol ; 13: 963031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059488

RESUMO

The clinical efficacy of current therapies for Hepatocellular carcinoma (HCC) are unsatisfactory. In recent years, chimeric antigen receptor (CAR) T-cell therapies have been developed for solid tumors including advanced HCC (aHCC), but limited progress has been made. Glypican-3 is a promising immunotherapeutic target for HCC since it is specifically highly expressed in HCC. A previous study indicated that GPC3-targeted CAR T-(CAR-GPC3) cells were well-tolerated and had prolonged survival for HCC patients and that Sorafenib could increase the antitumor activities of CAR-GPC3 T-cells against HCC in mouse models. Here, we report a patient with aHCC who achieved a complete response (CR) and a long survival period after the combination therapy of CAR-GPC3 T-cell plus sorafenib. A 60-year-old Asian male diagnosed with hepatitis B virus (HBV) related HCC developed liver recurrence and lung metastasis after liver tumor resection and trans-arterial chemoembolization therapy. The patient also previously received microwave ablation therapy for lung metastasis. After the enrollment, the patient underwent leukapheresis for CAR-GPC3 T-cells manufacturing. Seven days after leukapheresis, the patient started to receive 400 mg of Sorafenib twice daily. The patient received 4 cycles of CAR-GPC3 T cells (CT011) treatment and each cycle was divided into two infusions. Prior to each cycle of CT011 treatment, lymphodepletion was performed. The lymphodepletion regimen was cyclophosphamide 500 mg/m2/day for 2 to 3 days, and fludarabine 20-25 mg/m2/day for 3 to 4 days. A total of 4×109 CAR-GPC3 T cells were infused. The CT011 plus Sorafenib combination therapy was well tolerated. All the ≥ grade 3 AEs were hematological toxicities which were deemed an expected event caused by the preconditioning regimen. This patient obtained partial responses from the 3rd month and achieved CR in the 12th month after the first cycle of CT011 infusion according to the RECIST1.1 assessment. The tumor had no progression for more than 36 months and maintained the CR status for more than 24 months after the first infusion.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Animais , Glipicanas , Masculino , Camundongos , Sorafenibe/uso terapêutico , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...